James S Tanton
Author
Series
Language
English
Description
Learn why quadratic equations have "quad" in their name, even though they don't involve anything to the 4th power. Then try increasingly challenging examples, finding the solutions by sketching a square. Finally, derive the quadratic formula, which you've been using all along without realizing it.
Author
Series
Great Courses volume 27
Language
English
Description
If you're playing squash and hit the ball against the wall, at what angle will it bounce back? If you're playing pool and want to play a trick shot against the side edge, how do you need to hit the ball? Play with these questions and more through an exploration of the reflection principle.
Author
Series
Great Courses volume 31
Language
English
Description
Explore the beautiful and mysterious world of fractals. Learn what they are and how to create them. Examine famous examples such as Sierpinski's Triangle and the Koch Snowflake. Then, uncover how fractals appear in nature - from the structure of sea sponges to the walls of our small intestines.
Author
Series
Great Courses volume 26
Language
English
Description
Let's say you don't have a marked ruler to measure lengths or a protractor to measure angles. Can you still draw the basic geometric shapes? Explore how the ancient Greeks were able to construct angles and basic geometric shapes using no more than a straight edge for marking lines and a compass for drawing circles.
Author
Series
Great Courses volume 3
Language
English
Description
Using nothing more than an ordinary pencil, see how three angles in a triangle can add up to 180 degrees. Then compare how the experience of turning a pencil on a flat triangle differs from walking in a triangular shape on the surface of a sphere. With this exercise, Professor Tanton introduces you to the difference between flat and spherical geometry.
Author
Series
Great Courses volume 7
Language
English
Description
Examine how our usual definition of parallelism is impossible to check. Use the fundamental assumptions from the previous lectures to follow in Euclid's footsteps and create an alternative way of checking if lines are parallel. See how, using this result, it's possible to compute the circumference of the Earth just by using shadows!
Author
Series
Great Courses volume 20
Language
English
Description
In your study of lines, you used the combination of geometry and algebra to determine all kinds of interesting properties and characteristics. Now, you'll do the same for circles, including deriving the algebraic equation for a circle.
Author
Series
Great Courses volume 16
Language
English
Description
How can you figure out the "height" of the sun in the sky without being able to measure it directly with a ruler? Follow the path of ancient Indian scholars to answer this question using "angle of elevation" and a branch of geometry called trigonometry. You learn the basic trig identities (sine, cosine, and tangent) and how physicists use them to describe circular motion.
Author
Series
Great Courses volume 1
Language
English
Description
Explore the origins of one of the oldest branches of mathematics. See how geometry not only deals with practical concerns such as mapping, navigation, architecture, and engineering, but also offers an intellectual journey in its own right - inviting big, deep questions.
Author
Series
Great Courses volume 8
Language
English
Description
The beauty of geometry is that each result logically builds on the others. Mathematicians demonstrate this chain of deduction using proofs. Learn this step-by-step process of logic and see how to construct your own proofs.
Author
Series
Great Courses volume 22
Language
English
Description
We say that pi is 3.14159 ... but what is pi really? Why does it matter? And what does it have to do with the area of a circle? Explore the answer to these questions and more - including how to define pi for shapes other than circles (such as squares).
Author
Series
Great Courses volume 11
Language
English
Description
Delve deeper into the connections between algebra and geometry by looking at lines and their equations. Use the three basic assumptions from previous lectures to prove that parallel lines have the same slope and to calculate the shortest distance between a point and a line.
Author
Series
Great Courses volume 25
Language
English
Description
Unite geometry with the world of probability theory. See how connecting these seemingly unrelated fields offers new ways of solving questions of probability - including figuring out the likelihood of having a short wait for the bus at the bus stop.
Author
Series
Great Courses volume 2
Language
English
Description
Lay the basic building blocks of geometry by examining what we mean by the terms point, line, angle, plane, straight, and flat. Then learn the postulates or axioms for how those building blocks interact. Finally, work through your first proof - the vertical angle theorem.
Author
Series
Great Courses volume 23
Language
English
Description
So far, you've figured out all kinds of fun properties with two-dimensional shapes. But what if you go up to three dimensions? In this lecture, you classify common 3-D shapes such as cones and cylinders, and learn some surprising definitions. Finally, you study the properties (like volume) of these shapes.
Author
Series
Great Courses volume 24
Language
English
Description
If you double the side-lengths of a shape, what happens to its area? If the shape is three-dimensional, what happens to its volume? In this lecture, you explore the concept of scale. You use this idea to re-derive one of our fundamental assumptions of geometry, the Pythagorean theorem, using the areas of any shape drawn on the edges of the right triangle - not just squares.
Author
Series
Great Courses volume 5
Language
English
Description
We commonly define the Pythagorean theorem using the formula a2 + b2 = c2. But Pythagoras himself would have been confused by that. Explore how this famous theorem can be explained using common geometric shapes (no fancy algebra required), and how it's a critical foundation for the rest of geometry.
Author
Series
Great Courses volume 34
Language
English
Description
Ponder another surprising appearance of geometry - the mathematics of numbers and number theory. Look into the properties of square and triangular numbers, and use geometry to do some fancy arithmetic without a calculator.
Author
Series
Great Courses volume 15
Language
English
Description
Continue the work of classification with triangles. Find out what mathematicians mean when they use words like scalene, isosceles, equilateral, acute, right, and obtuse. Then, learn how to use the Pythagorean theorem to determine the type of triangle (even if you don't know the measurements of the angles).
Author
Series
Great Courses volume 14
Language
English
Description
Classify all different types of four-sided polygons (called quadrilaterals) and learn the surprising characteristics about the diagonals and interior angles of rectangles, rhombuses, trapezoids, and more. Also see how real-life objects - like ironing boards - exhibit these geometric characteristics.